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A new method is presented to predict which donors and

acceptors form hydrogen bonds in a crystal structure, based on

the statistical analysis of hydrogen bonds in the Cambridge

Structural Database (CSD). The method is named the logit

hydrogen-bonding propensity (LHP) model. The approach

has a potential application in identifying both likely and

unusual hydrogen bonding, which can help to rationalize

stable and metastable crystalline forms, of relevance to drug

development in the pharmaceutical industry. Whilst poly-

morph prediction techniques are widely used, the LHP model

is knowledge-based and is not restricted by the computational

issues of polymorph prediction, and as such may form a

valuable precursor to polymorph screening. Model construc-

tion applies logistic regression, using training data obtained

with a new survey method based on the CSD system. The

survey categorizes the hydrogen bonds and extracts model

parameter values using descriptive structural and chemical

properties from three-dimensional organic crystal structures.

LHP predictions from a fitted model are made using two-

dimensional observables alone. In the initial cases analysed,

the model is highly accurate, achieving � 90% correct

classification of both observed hydrogen bonds and non-

interacting donor–acceptor pairs. Extensive statistical valida-

tion shows the LHP model to be robust across a range of

small-molecule organic crystal structures.
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1. Introduction

The Cambridge Structural Database (CSD), Version 5.27,

November 2005 (Allen, 2002) provides a repository of

> 355 000 small molecule organic and organometallic crystal

structures. The existence of each structure in the database may

be considered as testament to the practicalities of that struc-

ture’s own crystallization, or more precisely, each database

entry adds to a collective a posteriori understanding of the

kinetics and thermodynamics of similar crystal formation.

Related molecular and structural properties may be subjected

to statistical analysis such that this latent information in the

CSD may be revealed. The work presented here focuses on

hydrogen bonds, which play a dominant role in the supra-

molecular arrangement within a crystal structure. Knowledge

of such interactions is vital in crystal engineering (Aakeröy,

1997; Desiraju, 1995; Etter, 1991), crystal structure prediction

(CSP; Motherwell, 1999; Day & Motherwell, 2006), solution of

crystal structures from powder diffraction data (e.g. DASH:

David et al., 2006) and prediction of protein–ligand docking

(Böhm & Klebe, 1996).



An important category is the occurrence of polymorphism,

particularly in the pharmaceutical industry. Unusual

hydrogen-bonding interactions can indicate a metastable

crystalline form, when identification of possible thermo-

dynamically more stable form(s) is sought, or conversely,

when rationalization of an obtained (believed) stable form is

required. Polymorph prediction techniques are widely used to

provide potential screening of metastable crystal structures,

which can dramatically increase the efficiency of the drug-

development process (Price, 2004). These powerful methods

have a proven track record, however, their current effective-

ness quickly decreases as the system complexity increases, e.g.

multiple component crystals, flexible molecules and salts (Day

et al., 2004; Nowell & Price, 2005). A measure of likelihood of

the dominant potential intermolecular interactions, i.e.

hydrogen bonding, whilst not describing the complete set of

interactions in the structure, may be effective in identifying

the presence (or absence) of significant structure-directing

factors. Furthermore, a knowledge-based method as such may

potentially be highly practical as a precursor to the compu-

tationally intensive polymorph-prediction methods.

There have been many previous hydrogen-bonding analyses

of organic crystal structures (Braga et al., 1997; Bilton et al.,

2000; Haynes et al., 2004; Infantes & Motherwell, 2004;

Chisholm et al., 2006; Parkin et al., 2006). Much of the recent

work has been in identifying and applying knowledge of

common motifs in the extended three-dimensional crystal

structure which, it is indicated, suggests routes of crystal

formation via supramolecular synthons (Desiraju, 1995). This

approach has proved very useful and shows much promise.

The primary aim of this study is to describe pairwise

interactions alone. While we acknowledge the advantage of a

more detailed extended three-dimensional structural

description, especially for more complex examples, we suggest

that given the right data, the most likely pairwise hydrogen

bonds in a crystal structure will be both predictable and

prolific across structures containing similar molecules. Indeed,

as will be shown, the initial description proves to be extremely

successful. This success suggests that there is a dominant role

of pairwise hydrogen bonding in molecular recognition and

organic crystal growth. That being said, a prediction of non-

covalent bonding could well be improved by the inclusion of a

description of the extended three-dimensional crystal struc-

ture (and future developments in this direction may be carried

out).

In our new approach, the descriptive properties of

hydrogen donor and acceptor atoms and their molecular

environments are accumulated per crystal. These are used as

both qualitative and quantitative parameters to construct a

dichotomous (two-state) probability model to predict the

propensity of a hydrogen bond to form. Owing to the discrete

nature of the variable, the logit probability distribution is used

as a model curve by which to fit parameters via the logistic

regression technique (Agresti, 1990).

Currently, the CSD suite of software provides a wide range

of tools for searching the database for specific interactions and

structural properties, such as ConQuest (Allen & Taylor, 2005;

Bruno et al., 2002), Isostar (Bruno et al., 1997) and Mercury

(Macrae et al., 2006). From the outset, however, the work has

required that new surveyor and analysis methods be

constructed, since the specific descriptive parameters asso-

ciated with each donor and acceptor group must be obtained.

A new survey and categorization application has been

constructed, named H-Bond Surveyor that conducts complete

analysis of hydrogen donor and acceptor atoms, and the

hydrogen bonds in which they participate in crystal structures.

For increased flexibility, functional groups can be defined in

the Quest (Allen et al., 1991) query format that may be of

specific detail for each survey, to describe the environment

surrounding an identified donating or accepting atom.

We begin this paper by describing the database survey and

statistical methodology. An example application is then

presented and a specific structure is analysed in detail. Results

and discussion of the application, and in particular a statistical

assessment of the model, are presented in the following

section, and finally, conclusions are drawn. Specific theoretical

details are provided in the Appendix.

2. Methodology

In this approach, hydrogen donor and acceptor atoms, and the

hydrogen bonds in which they participate are identified per

crystal structure. We define the existence of a hydrogen bond

between potential donor and acceptor atoms using distance

and angle criteria, and the observation of any given pair as

being hydrogen bonded is recorded as a two-state variable,

True or False. Descriptive properties are then accumulated

that are based on the atoms’ molecular environments. These

are used as both qualitative and quantitative parameters to

construct a dichotomous (two-state) probability model. The

model is applied to compute a probability measure termed

propensity, denoted �, for the formation of a hydrogen bond

between a specified donor and acceptor atom. The resulting

description is termed the logit hydrogen-bonding propensity

(LHP) model. The key assumption in the LHP model is that

the actual hydrogen bonds directing the formation of a crystal

structure will be those with the highest likelihood of forming

among all possible donor–acceptor pairs.
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Figure 1
Chemical diagram for the MIFCEJ molecule used for LHP model
example propensity predictions, showing potential hydrogen-bonding
functional groups: (a) NH, of indole; (b) secondary amide, CONH; (c)
primary amide, CONH2; (d) carboxylic acid, COOH.



The general mode of application of the model is to identify

a target molecular structure, for which one would like to

predict propensity values for each possible donor–acceptor

pairing within the crystal structure. One aims to combine the

information in the CSD for structures and/or chemical func-

tionality related to the structure being modelled to form an

indicative representation of that structure. Thus, despite the

possibility of there being no precedent structures in the CSD

with all the target functionality, knowledge of interactions

between all target structure sites is obtained collectively.

In order to illustrate the presented methodology, an

example crystal structure has been selected from the CSD. The

example chosen is N2-(indol-3-ylacetyl)-l-asparagine, a

molecule of moderate size, which contains strong hydrogen-

bonding functionality and is also of biological interest,

displaying growth promoting activity in plant tissue. The

crystal can be found in the CSD under reference code

MIFCEJ (Antolic et al., 2001; Fig. 1). In order to maintain a

fair assessment, data from this structure are kept separate

from any model training sets. As such, the example forms a

‘blind test’ for the approach that may subsequently be criti-

cally assessed. Further discussion of the chemical properties of

the example and the associated descriptive properties to be

used in model prediction can be found in xx3 and 4. Once a

target structure is identified, the LHP model procedure

involves three stages, as follows.

2.1. Dataset extraction

Stage 1 is to extract a subset of crystal structures from the

CSD that contain the relevant chemical functional groups.

Primarily, one would like to have data for only the most

similar crystal structures, in an effort to obtain discriminatory

data. Thus, it is desirable to screen away any chemically

incomparable structures (e.g. charged versus uncharged

species). This stage is also a matter of efficiency, since many of

the crystal structures contain no hydrogen bonding, or contain

only bonds between atoms unrelated to the target crystal, thus

not contributing any useful data for the particular case of

interest. This subset selection is achieved using ConQuest via

the design and selection of donor/acceptor functional groups,

and the application of screens and/or search combinations.

The set is then screened to remove duplicate entries. Often

in the CSD there is more than one entry for the same crystal

structure. These are often due to repeated refinements,

republications and redetermination under different experi-

mental conditions (van de Streek & Motherwell, 2005).

Polymorphs, solvates and cocrystals are not removed since

they may contain different extended three-dimensional

structures. The screening is achieved using the comparison

algorithm available in Compack (Chisholm et al., 2006), which

overlays a pair of structures to identify those that are identical.

The procedure for data-set extraction is illustrated for the

example structure in x3.1.

2.2. Hydrogen-bond surveyor

Stage 2 is the extraction of the descriptive properties per

donor–acceptor pair (X–Y) for every crystal structure, using

the H-Bond Surveyor application. In each crystal structure,

hydrogen bonds are located as atom–hydrogen–atom contacts

(X—H� � �Y), and the appropriate donating and accepting

atoms are identified. The analysis employs user-variable

contact criteria (X—Y atom distances and X—H—Y atom

angles are assessed) by which to accept or discard possible

contacts. Iteratively over the set of contacts, the pair of

functional groups and the set of properties related to the bond

are then identified (see below), to act as input model para-

meters describing the hydrogen-bonded pair. Once the

bonded pairs are surveyed, all permutations of observed

potential donors and acceptors not found to be hydrogen

bonded (according to the survey) are then paired together and

the model properties are extracted. Thus, all combinations of

donor–acceptor pairs in a structure, either interacting or non-

interacting, are analysed.
2.2.1. Model parameters. The role of the parameters is to

discriminate between hydrogen bonds, i.e. to assess whether

one bond is statistically favoured over another within the

chosen CSD subset. This is achieved by assigning all descrip-

tors a model coefficient that changes magnitude according to

how influential the descriptor is to the outcome. Two types of

parameters are used: quantitative and qualitative. Quantita-

tive parameters scale the predicted propensity by the influence

felt from the specific magnitude of that parameter. The value

of the quantitative parameters must be calculated for a chosen

donor–acceptor pair, and then its influence on the model

equation is applied through its model coefficient. Qualitative

parameters separate groups of sample data according to their

label, e.g. all the pairs which involve a carboxylic acid as the

hydrogen donor. Different groups may feel a greater or lesser

effect from other variables in the model and so this distinction
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Figure 2
Illustrated calculation of the competition function on the MIFCEJ
molecule for a choice of donor and an acceptor site (N3 of the primary
amido group and O2 of the carboxylic acid group). The arrows show the
potential donor hydrogen atoms (outward) and potential acceptor lone
pairs (inward).



provides more flexibility. Qualitative parameters act like a

switch in the model. They provide an influence from their

model coefficient to the model equation only if the parameter

is relevant to the specific donor–acceptor pair chosen.

Qualitative parameters: (a) Donor and acceptor functional

group

Different hydrogen-bonding behaviour is well known to be

separated qualitatively by the functional group, denoted �
herein, to which the donor/acceptor atom belongs, e.g.

carboxyl, hydroxyl, ether etc. Indeed, the concept of ‘func-

tional group’ is an empirical description from the result of

discriminatory chemical observation. A survey of the

hydrogen bonding in a set of structures using the functional

group as a model parameter obtains a complete set of atom

pairs which did and did not form contacts, categorized by

donor/acceptor group membership. This label can then weight

the propensity score up or down (which may or may not

depend on other parameters) in the case of a group which may

donate or accept more or less than the other alternatives.

Thus, for each possible functional group, i, a fitted model

contains the binary �A(i) or �D(i) (or perhaps both, given an

acceptor group which may also have donor functionality, e.g.

alcohol OH) to act as a switch. In this way, the influence of the

appropriate fitted coefficient is included in the model calcu-

lation.

Previously, a similar quantitative approach has been taken

in which the frequencies of hydrogen bonds in the CSD for a

designated set of functional groups are expressed as a fraction

of the total possible occurrences of the groups both being

present (Allen et al., 1999; Infantes & Motherwell, 2004). In

the current approach, applying the functional group as a lone

model parameter, a similar score is accessible from the H-

Bond survey. We define this percentage as a participation of

specific functional groups in hydrogen bonds within a crystal

structure subset. In the model scheme, however, the functional

group parameter is qualitative and the effects on the

propensity of a pair remain relative to different groups, as will

be described later. This then in the model scheme can be

described as relative participation. We also define further

discriminatory variables in this new method, as will be

presented in the next section, that give a specific expectation,

amending the average observed behaviour for the formation

of hydrogen bonds between groups.

Quantitative parameters: (b) Competition function

The competition function assesses the number of H atoms

available for donation, D, and the number of available

acceptor lone pairs, A, expressed as a fraction of the total on

the discrete covalently bonded unit(s) [and potentially also

ion(s)] in the asymmetric unit. Thus, the formation of a

particular hydrogen bond may be thought of as a function of

the different donor and acceptor atoms competing for a

partner. If a functional group has more than one donor/

acceptor site the competition function accounts for this

potential advantage over other groups. Thus, permutations of

non-bonded donor–acceptor pairs are analysed per group, not

per potential donor/acceptor atom. The competition function

is

�cði; aÞ ¼

P
c Dc þ

P
c Ac

Di þ Aa

: ð1Þ

It is expressed in terms of alternative a for individual i,

belonging to choice set c. For example, given an individual

donor atom, a potential pair with an acceptor atom as one of

the alternatives has an associated competition value due to all

the donor and acceptor atoms in the set of choices. (Note the

description is identical if one considers the symmetric situa-

tion of an individual acceptor’s ‘choice’ per potential donor.)

The function has a minimum of 1 and an unlimited maximum.

A computation of the competition function is illustrated in

Fig. 2. We use the example MIFCEJ molecule, as introduced in

the previous section. A donor and an acceptor site are chosen

(N3 of the primary amido group and O2 of the carboxylic acid

group). The arrows show the potential donor H atoms and

potential acceptor lone pairs. We see the total Dc + Ac on the

molecule is 12 and the sum on the chosen sites is 4, thus the

competition as a quotient of the two scores is 3.

(c) Steric Density Function

If the functional group is considered to be a description of

the primary environment around a donating/accepting atom,

the steric density function is an attempt to describe the

secondary or more long-range environment. A measure of

steric density aims to account for situations when a normally

preferable hydrogen bond pairing may not form owing to

steric accessibility reasons, i.e. how crowded is the region

around a potential donor/acceptor.

The function is defined by assessing the size of the hydro-

phobic or non-hydrogen-bonding region around a donating/

accepting atom using the molecular graph connectivity data of

the structural component. The method accounts for all the

atoms in this region by way of a directed walk around the

molecular graph until the next potential hydrogen-bonding

atom is met. In this way a sub-graph for the hydrophobic

region is built. The method identifies the total number of

atoms in the region, �c=2j, that are not part of j identified

functional group(s), and a distance measure named the

research papers

Acta Cryst. (2007). B63, 768–782 Peter T. A. Galek et al. � Hydrogen-bonding propensity 771

Figure 3
Illustrated calculation of the steric density function on the MIFCEJ
molecule for the secondary amino group. The sum of the marked atoms
represents the region bounded by the other donors and acceptors, and the
line marks the most direct path between the most separated atoms.



furthest direct-atom path length, rc=2j in terms of covalent bond

count. This is the maximal shortest path in the set of shortest

paths between the atoms of the sub-graph. The method

returns a ratio of the total atom count and the furthest direct-

atom path length. In this way a type of ‘steric density’ �cðiÞ is

defined

�cðiÞ ¼
�c=2j

rc=2j

: ð2Þ

The function applies a graph-traversal technique (see e.g.

Cormen et al., 1989) using a recursive algorithm, beginning at

a donor or acceptor atom and analysing adjacent non-

hydrogen-bonding atoms. The algorithm may walk to the next

non-hydrogen-bonding atom, stop at an atom with hydrogen-

bonding functionality, or reach a branch in the connectivity

graph. At a branch point the algorithm begins a new lower

level of recursion and begins the walk again from this point in

the new direction. At a terminal atom, the algorithm steps

back up to the next higher level. Thus, the algorithm performs

an exhaustive walk from the donor/acceptor around the

connected hydrophobic region of the molecule. Counted

atoms are flagged which ensures no recounting. This helps the

efficiency of the algorithm and ensures cyclic fragments can be

dealt with. �c has a minimum of zero and is increasingly

positive as the number of hydrophobic atoms in the molecular

region increases.

Computation of this function is illustrated again using the

MIFCEJ example molecule, Fig. 3. The total atom count, �c=2j,

of the region bounded by the other donors and acceptors is 10,

as displayed by the marked atoms, and the most direct path

highlighted between the most separated atoms is 7. Thus, the

steric density is 1.43 as a quotient of the scores.

2.2.2. Summary. We have thus far extracted a set of unique

crystal structures containing functionality of relevance to the

target molecule, and located their hydrogen bonds and

combinations of non-interacting potential donor–acceptor

atom pairs. For each pair we compute model parameters

comprised of chosen molecular and chemical descriptors.

Once the data is extracted, the next step is to derive a model as

an attempt to account for the hydrogen-bonding behaviour

that is observed.

2.3. Logistic regression

The logistic regression technique is a widely used tool for

the analysis of discrete events (see e.g. Agresti, 1990; Hosmer

& Lemeshow, 2000). Following initial adoption in the field of

epidemiology, the technique has found applications in the

fields of biomedical research, ecology, finance, criminology

and linguistics, to name a few examples. The application of

logistic regression to the properties of crystal structures, as

presented in this work, is a novel approach. For this reason,

much of the theory behind the regression modelling presented

herein will be discussed alongside the associated results. The

general goal of the regression model is to find the best fitting

and most economical model, whilst preserving a scientifically

(chemically) reasonable description. For the interested reader,

a more detailed theoretical background of the approach may

be found in the Appendix. An overview of the approach now

follows.

2.3.1. Application. Categorization of hydrogen bonds and

descriptive data are obtained as discussed previously in the

section for all permutations of possible hydrogen-bonding

atom pairs in a selected subset of crystal structures. Model

fitting is then carried out via logistic regression with a linear

description of the variable parameters. The data set contains

three types of information to be used in the model. The

response variable is the key information per donor–acceptor

pair which gives the two-state outcome under the settings of

the survey, that the pair was involved in a hydrogen bond or it

was not. The quantitative and qualitative variables (as defined

above) then act as discriminating factors to account for the

frequency of occurrence of one type of bond over another.

The essence of the model is a function of probability (the

log of the odds of the probability, P, of a pair forming a bond),

represented by a linear model of the descriptive parameters,

xi
k

log
P

1� P

� �
¼ �þ

X
k

xi
k�k: ð3Þ

The function of the log of the odds of P is also known as the

logit of P. The rationale for this choice of functional form is

described in the Appendix. � is the intercept or baseline

variable, and the �k coefficients vary according to the degree

of influence of their corresponding parameter, xi
k. Assuming

only partial information, an approximation to P may be

obtained, which is denoted �. Specifically for the LHP model,

with the parameters defined in x2.2, the model is given by

log
�

1� �

� �
� logitð�Þ

¼ �þ �cði; aÞ�� þ �D;cðiÞ��D
þ �A;cðaÞ��A

þ �D;cðiÞ�D þ �A;cðaÞ�A: ð4Þ

Model fitting (optimization of the � coefficients) is achieved

using a form of non-linear regression using the logistic func-

tion and a maximum likelihood algorithm (see Appendix).

Given a fitted model, the estimated likelihood of a pair to form

a hydrogen bond is then measured from the relation
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Figure 4
Functional groups as defined in H-Bond Surveyor for the example model
survey. Specific groups: (a) amido; (b) aliphatic hydroxyl; (c) carboxyl; (d)
ether; (e) secondary amino.



�i
cðaÞ

¼
expð�þ �cði; aÞ�� þ �D;cðiÞ��D

þ �A;cðaÞ��A
þ �D;cðiÞ�D þ �A;cðaÞ�AÞ

1þ expð�þ �cði; aÞ�� þ �D;cðiÞ��D
þ �A;cðaÞ��A

þ �D;cðiÞ�D þ �A;cðaÞ�AÞ

ð5Þ

¼
1

1þ expð�ð�þ �cði; aÞ�� þ �D;cðiÞ��D
þ �A;cðaÞ��A

þ �D;cðiÞ�D þ �A;cðaÞ�AÞÞ

ð6Þ

obtained from a rearrangement of (4). This measure has been

termed the propensity for a hydrogen bond to form, or more

completely, the logit hydrogen-bonding propensity. For any

hypothetical hydrogen bond with a donor–acceptor pair, it is

thus possible to calculate a propensity score using (6), taking:

(i) a fitted set of LHP model coefficients;

(ii) values of the quantitative parameters: competition and

steric density about the donor and acceptor for the residue on

which the pair resides;

(iii) identified qualitative parameters: the specific donor and

acceptor group for the selected pair.

Thus, by way of the coefficients’ values, the model equation

gives a result for a particular donor–acceptor pair in their

specific molecular environment.

3. Example application

The following section details the extraction of the dataset,

analysis of hydrogen bonding and model fitting with regard to

forming a prediction for the example molecule, MIFCEJ (Fig.

1). The intention is to form a hierarchy of predicted propen-

sities for potential hydrogen-bonded atom pairs in the struc-

ture using the methodology set out in the previous section.

Once obtained, the predictions may then be compared with

the interactions found in the known three-dimensional struc-

ture. Aside from this illustration using the example, we note

that statistical assessment of the regression procedure allows a

complete description of the predictive power of models, and so

such treatment will also be presented. This forms, in effect, a

global view of the success of the model for the entire set of

crystal structures.

3.1. Details of the CSD survey

The CSD survey was conducted to obtain a relevant dataset

to the example. Search specifications (using ConQuest)

located any structure that contains at least one amide frag-

ment and one carboxylic acid fragment, with resolved three-

dimensional coordinates (including all H-atom three-dimen-

sional coordinates determined). The amine group proved to

be prevalent in the dataset without explicitly searching for this

fragment. To generalize, adjacent atoms to the amide group

were not specified and the C-atom type was unspecified,

leading to the general amido fragment description (see Fig.

4a). To screen against potential organometallic structures, salts

and other ionic species, specific queries were defined,

including element screens. The CSD survey yielded 1182

structures. Following the removal of duplicate entries, yielding

1083 structures, the dataset was analysed with the H-Bond

Surveyor to obtain the hydrogen-bonding information.

The survey specifications were as follows. The minimum and

maximum donor–acceptor distance cut-offs were the sum of

the atomic van de Waals radii�5 and +0.1 Å, respectively. The

minimum donor–hydrogen–acceptor angle cut-off was 90�

(the optimum angle being 180�). Intramolecular and poly-

furcated bonds were not considered individually, however, in

the latter case the presence of such interactions would count

as multiple separate true hydrogen-bond observations. (Future

applications may include such interactions as unique options

for the model outcomes.) The details of the survey are given in

Table 1.

Other commonly occurring groups were specified as quali-

tative parameters, namely the aliphatic hydroxyl, carboxyl,

ether and secondary amino groups. These groups, as defined in

the survey, are displayed in Fig. 4. The remaining less-common

groups were cumulatively classified as ‘other’. Frequency

statistics for the specific pairs are discussed in the next section.

3.2. LHP model regression

3.2.1. Training dataset statistics. The surveyor results listing

the true/false hydrogen-bond observations and model para-

meter values for every potential donor–acceptor atom pair

were fitted using the logistic regression technique available in

the statistics package XLSTAT (Addinsoft, 2006, available as

an add-in to the Microsoft Excel spreadsheet software). There

were 17 558 potential pairs as raw data for the model fitting.

Of all the potential hydrogen-bond pairs, 76% were observed

not to be hydrogen bonded (permutations in possible pairs

tend to create a much greater number of pairs that are not

bonded).

As qualitative variables, five functional groups were iden-

tified and one category named ‘other’ for those miscellaneous

individually less frequent groups, resulting in six variables.

Five of these could possibly donate (all but the ether group)

and five have potential accepting ability (all but the secondary

amino group).1 Itemized group frequency data are given in

Table 2. It is not surprising, given the origin of the data from
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Table 1
Hydrogen-bond surveyor summary.

Item Count

Total structures surveyed 1083
Total bonds observed 4769
Total intermolecular bonds observed 4331
Total unique donating groups 5
Total unique accepting groups 6

1 All six groups were, in fact, observed to accept hydrogen bonds, although the
frequency of the secondary amino group accepting an H atom with respect to
the total number of observations was prohibitively low for convergence of the
regression. Manual analysis revealed that most of these few observations were
aziridine groups, which would perhaps, due to a sufficiently different chemical
nature, warrant a separate model parameter from the general description of
the secondary amino group used in this survey. For these reasons, the group
was not considered as a parameter in the acceptor category, and the
corresponding observations were removed from the dataset.



the CSD survey, that the most common donor group was the

amido group, occurring in 41% of all possible pairs observed.

However, this group was less dominant in the set of potential

acceptor groups, 27%. There is also frequent occurrence of the

remaining five group categories, giving a well balanced data

set.

3.2.2. Regression statistics. The quality of the model, how

well it can predict the hydrogen-bonding likelihood of a

donor–acceptor pair, can be measured in terms of both the

training dataset and optionally a separate validation set, that

is, similar donor–acceptor pairs from crystal structures not

used in the model fitting. Both analyses have been conducted

for the example regression, and the observed model quality is

discussed in x4, including fitting statistics and model valida-

tion.

3.3. Example comparison: model propensities versus
observed hydrogen bonds

Model validation provides a global view of the predictive

power of an optimized model. In order to illustrate this power

in a specific case, we apply the optimized LHP model to the

MIFCEJ example (Fig. 1). The values for the model para-

meters will be derived for the structure and then LHP � values

will be calculated for all possible donor–acceptor pairs. These

may subsequently be compared with the actual bonds

observed in the CSD structure. We restate that this forms a

true ‘blind test’, as would be a molecule whose crystal struc-

ture was unknown, since the structure was not included in the

training set for the model.

The example molecule currently has no other polymorphic

forms in the CSD. It is pertinent to state that this is no guar-

antee that other thermodynamically more stable structures

may not exist. When comparing the hydrogen bonding of an

existing structure with predicted propensities for its donor–

acceptor pairs, predictions and the observations should thus

be rationalized together. Low predicted propensities may

indicate that if the hydrogen bond is observed, the structure to

which it belongs could be thermodynamically metastable (or

vice versa).

In the molecule, there are four potentially hydrogen-

bonding functional groups (labelled in Fig. 1):

(a) NH, of indole;

(b) secondary amide, CONH;

(c) primary amide, CONH2; and

(d) carboxylic acid, COOH.

The observed hydrogen bonding, as surveyed, is presented in

Table 3. Firstly, the observed intermolecular hydrogen bonds

are listed, followed by combinations of groups which were not

observed to be interacting. The parameter details, as model

input for each pair, are also presented here. Note that when

identifying the non-interacting pairs, the survey considers only

unique functional-group pairs. That is, irrespective of which

group donated or accepted an H atom, an XY pair will not be

in the list of False observations if it is observed as True, either

as X—H—Y or as Y—H—X. Thus, although both cases can,

and do, occur simultaneously (giving two unique True obser-

vations), the hydrogen bond is maintained as a pairwise

interaction in the set of False observations. The model results

are compared with these observations in the following section.

4. Results and discussion

4.1. Model characteristics

The fitted LHP model equation for the amide dataset (1083

structures) is

logitð�Þ ¼ 2:50 � 0:21�c � 0:14�D � 0:95�A

þ 0:45�D amido þ 0:02�D other

þ 0:42�D hydroxy; aliph: � 1:35�D carbox: � 2:16�A other

� 1:72�A ether � 0:90�A carbox: � 0:36�A hydroxy; aliph:

ð7Þ

The baseline variables (of coefficient = 0) in the model are the

secondary amino group as the donor and the amido group as

the acceptor (chosen at random at the beginning of the

regression procedure). Negative or positive influence is with

respect to this baseline and the coefficients are adjusted during

the regression to reproduce correctly the observed effect of

each parameter.
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Table 2
Summary statistics of the donor–acceptor pair data.

(a) Pairwise hydrogen-bonding observations

Variable Category Frequency %

Hydrogen bond exists FALSE 13 278 75.6
TRUE 4280 24.4

(b) Quantitative parameters

Variable Minimum Maximum Mean
Standard
deviation

Competition function � 0.000 124.000 12.722 14.443
Donor steric density

function �D

0.000 8.333 1.106 1.045

Acceptor steric density
function �A

0.000 9.833 1.495 1.345

(c) Qualitative parameters. Frequency is the total observations of a category in
pairwise combinations, forming potential hydrogen-bonded donor–acceptor
groups, throughout the set of crystal structures. Percentages express a fraction
of group frequency with the combined frequency of all identified categories.

Variable Category Frequency %

Donor, �D Amido 7337 40.8
Other 3861 21.4
Amino, secondary 2974 16.5
Hydroxyl, aliphatic 2369 13.2
Carboxyl 1464 8.1

Acceptor, �A Other 7315 40.7
Amido 4724 26.3
Ether 2931 16.3
Carboxyl 1280 7.2
Hydroxyl, aliphatic 1315 7.3



Standardized coefficients allow for direct comparison of the

relative influence of the model parameters on the likelihood of

a hydrogen bond forming. They account for the dependence

on different parameter magnitudes by scaling the equation

coefficients by their respective estimated standard deviations.

The standardized model coefficients are presented in Fig. 5,

along with associated uncertainties, calculated with 95%

statistical confidence. Comparison of the coefficients reveals

that the most influential model parameter is the hydrogen-

bond competition function. It is large and negative, thus a

donor–acceptor pair with high competition will be much less

likely to bond. The steric density function around the acceptor

group is also influential in the model, but less so than the

competition function. They are both much more influential

than the steric density on the donor group. The most positively

influential donor groups are the amido and aliphatic hydroxyl

groups. More discrimination is observed between particular

acceptor groups: the ether and remaining ‘other’ individually

less numerous groups are strongly and negatively influential –

much less favoured to accept a hydrogen bond than the

secondary amino group, and the baseline, amido group.

For a concise quantitative comparison of the categorical

model parameters (donor and acceptor type) it is possible to

calculate relative odds ratios using the parameter coefficients.

The odds ratio is obtained using the exponent of each coeffi-

cient (as is each coefficient’s influence on the resulting logistic

function), and so all odds ratios are relative to the parameters

assigned zero coefficient magnitude, the baseline variables.

The odds ratios for the example donor and acceptor group

variables in the model are given in Table 4.

The values show that, within the 95% confidence interval

(CI), the amido group and the hydroxyl group are the most

prolific hydrogen donors. They are roughly 1.5 times more

likely to donate than the baseline, secondary amino, having

odds ratios of 1.56, CI (1.28, 1.89) and 1.52, CI (1.21, 1.90),

respectively. The carboxyl group is 0.26 times less prolific than

the secondary amino group with a CI of (0.20, 0.35). The

‘other’ miscellaneous donors show a similar potential donating

ability as the baseline with an odds ratio of 0.98, CI (0.79,

1.22). A similar shared odds ratio such as this indicates that,

with all other quantitative parameters being equal, the two

groups may be described as of a similar hydrogen-bonding

propensity in the set of structures surveyed.

The disparity within the set of acceptors is greater. All

groups have odds ratios lower than 1 and hence are less

prolific acceptors than the baseline, amido group. The

hydroxyl is the next most prolific

acceptor, as shown by an odds ratio

of 0.70, CI (0.59, 0.83) and the

carboxyl group is ranked next, 0.41,

CI (0.33, 0.50). The ether and

‘other’ groups are between five and

eight times less likely to accept than

the amido group, with respective

ratios 0.18, CI (0.14, 0.23) and 0.12,

CI (0.10, 0.13).

4.2. Model quality

This section discusses the statis-

tical assessment of the example

model. Such assessment is vital to

ascertain the quality and applic-

ability of one’s choice of model

function. A variety of techniques

are applied to assess the accuracy

research papers

Acta Cryst. (2007). B63, 768–782 Peter T. A. Galek et al. � Hydrogen-bonding propensity 775

Figure 5
Standardized model coefficients. D = functional group as hydrogen donor, A = functional group as
hydrogen acceptor. The baseline model variables (D-amino, sec; A-amido) are fixed in the regression
procedure and the categorical � coefficients are adjusted relative to them. They appear as zeroes with no
error bars.

Table 3
Model parameters of MIFCEJ.

The donors/acceptors are categorized as identified survey groups, with the functional description on the example molecule in parentheses.

Donor, �D Acceptor, �D

Hydrogen-bonding observation,
label (see Fig. 8a)

Competition
value, �

Donor steric
value, �D

Acceptor steric
value, �A

Hydrogen-bond
distance (Å)

Amido (secondary amide) Amido (secondary amide) Intermolecular, � 4 2 1.43 2.837
Amino, secondary (indole) Carboxyl( O) Intermolecular, � 4 5 1 3.061
Amido (primary amide) Amido (primary amide) Intermolecular, � 3 1 1 2.880
Amido (primary amide) Carboxyl( O) Intermolecular, � 3 1 1 2.987
Carboxyl(OH) Amido (primary amide) Intermolecular, " 4 1 1 2.627
Amino, secondary (indole) Amido (primary amide) Not bonded 4 5 1 N.a.
Amino, secondary (indole) Amido (secondary amide) Not bonded 4 5 1.43 N.a.
Carboxyl(OH) Carboxyl( O) Not bonded 4 1 1 N.a.
Carboxyl(OH) Carboxyl(OH) Not bonded 12 1 1 N.a.



with which the model predicts the true/false observations from

the CSD survey.

4.2.1. Goodness-of-fit and parameter significance. The

model is firstly assessed by the extent to which each variable is

independent (i.e. providing unique information to the

outcome). The correlation matrix, Table 5, represents how

similarly the independent quantitative parameters (competi-

tion and steric density around both the donor and acceptor)

vary with the likelihood of either of the two outcomes. The

correlation between the donor steric density function and

competition is the largest correlation between different

parameters, 0.225. This value is not negligible, but is of an

acceptable magnitude. The correlation between competition

and acceptor steric density is much lower, 0.104. This may be

expected as the competition is more related to donor sites,

which may often also be able to accept hydrogen bonds. This

would also explain the correlation coefficient of 0.195 between

donor steric density and acceptor steric density.

The goodness-of-fit statistics

are given in Table 6. They

represent how much better the

model equation fits the sample

data, compared with the inde-

pendent model (which is the

model before optimization of

the coefficients in subsequent

iterations).�2 Log(Likelihood)

is often termed the deviance.

The R2 values measure how well

the model is adjusted compared

with the independent data.

They result from a point biserial

correlation between predictions

and observations. Three

methods for estimating this

value are given: McFadden (1973), Cox & Snell (1989) and

Nagelkerke (1991). They have a value between 0 for uncor-

related outcomes and 1 for completely correlated outcomes.

AIC is Akaike’s information criterion and SBC is Schwarz’s

Bayesian criterion, used to show the relationship between the

goodness-of-fit and the number of model parameters used.

The above tests may also be referred to in Agresti (1990).

The null hypothesis test, Table 7, checks if the fitted model

is significantly more accurate than the null model (a model

which gives the ‘null probability’, P0 = 0.244, whatever the

value of the training set explanatory variables). If the null

model is proved to be significantly worse than the fitted model

at reproducing the training data, we conclude the fitted model,

known as the alternative hypothesis is supported by the data.

Three statistics are calculated, all of which follow a �2 distri-

bution. If the Pr > �2 value is less than a confidence interval

(5% in this example) then the model is said to be significantly

better than the null hypothesis. The outcome is Pr > �2 of

< 0.01% in each case, demonstrating the significance of the

model fit.

Type III analysis, Table 8, is used to observe the significance

of each variable parameter in the model. It recalculates the

predictions removing one variable at a time from the model

and observes any significant reduction in predictive power.

Again, the confidence interval is 5% and we see that all the

parameters in this example are significant with a Pr > �2 value

of < 0.01%, using two different estimations: Wald’s �2 and the

LR �2 values. Details of both estimates may be found in

Agresti (1990). (Note that the significance of the qualitative

model parameters has been discussed with regard to odds

ratios in the previous section.)

4.2.2. Classification of training set. The ROC curve

(receiver operating characteristics) gives a measure of how

well classified are the predictions using the training data as a

test (Agresti, 1990). The description originates from the field

of signal processing, but now finds application throughout the

field of statistical analysis. It calculates percentage classifica-

tion using a variable cut-off, either side of which a propensity

is considered positive or negative. The sensitivity is the fraction

of correct positive predictions and the specificity is the fraction
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Table 5
Correlation matrix of the quantitative parameters shows the degree of
independence of each model parameter to the model prediction.

Variables � �D �A

� 1.000 0.225 0.104
�D 0.225 1.000 0.195
�A 0.104 0.195 1.000

Table 4
Odds ratios for the example qualitative model parameters using baseline donor secondary amino and
acceptor amido groups.

Parameter
Model
coefficients

Lower bound
(95% confidence)

Upper bound
(95% confidence) Odds ratio CI Lower CI Upper

Donor group, �D

Amino, secondary 0.000 – – 1.000 – –
Amido 0.445 0.250 0.639 1.560 1.284 1.894
Other �0.021 �0.238 0.196 0.979 0.788 1.216
Hydroxyl, aliphatic 0.416 0.190 0.643 1.517 1.209 1.903
Carboxyl �1.345 �1.627 �1.064 0.260 0.197 0.345
Acceptor group, �A

Amido 0.000 – – 1.000 – –
Other �2.155 �2.266 �2.045 0.116 0.104 0.129
Ether �1.717 �1.958 �1.476 0.180 0.141 0.228
Carboxyl �0.903 �1.098 �0.708 0.405 0.333 0.492
Hydroxyl, aliphatic �0.360 �0.533 �0.187 0.700 0.587 0.830

Table 6
Goodness-of-fit statistics comparing the independent LHP model with
the optimal model following regression.

The methods are introduced in x4.2.1.

Statistic Independent model Converged model

Observations 17 558 17 558
Degrees of freedom 17 557 17 546
�2 log(likelihood) 19 502 11 617
R2(McFadden) 0.000 0.404
R2(Cox and Snell) 0.000 1.000
R2(Nagelkerke) 0.000 1.000
AIC 19 506 11 641
SBC 19 522 11 734
Iterations 0 11



of correct negative predictions. The diagonal dotted line (see

Fig. 6) is the outcome of a purely random model as there is an

equal number of correct and incorrect predictions. An AUC

(area under the curve) greater than 0.5 indicates the model

predictions are correct more frequently than a random choice.

An AUC of 1 indicates a perfect model: correct every time. An

AUC above 0.8 is considered excellent and above 0.9 indicates

an outstanding model (Hosmer & Lemeshow, 2000). The

difficult middle section around sensitivity/specificity = 0.5

needs a well discriminating model in less extreme cases, and

must be well described by the model parameters in order to

obtain a high AUC. One may observe that the example LHP

model gives an outstanding classification of the training data

and achieves an AUC of 0.909.

4.2.3. LHP model validation. Validation of the model is

crucial to check that it is not highly dependent on the parti-

cular sample data, but also describes model behaviour in

independent systems. In order to test the validity of the LHP

model to the particular dataset, holdout validation was

performed. The original dataset of 17 558 potential pairs was

split into two subsets: 8297 random pairs were removed from

the set to leave 9261 remaining pairs (a ratio of 47% to 53% of

the complete dataset). Those remaining pairs were used as

training data for the regression and following convergence, the

resulting model equation was used to check the predicted

outcomes for the 8297 data in the validation set.

Each donor–acceptor pair (hydrogen bonded or not) in the

training set can be considered a unique source of explanatory

data to go toward the model fit. However, groups of pairs may

originate from the same crystal structure. Thus, in order to

avoid any information cross-over from validation set to

training set, groups of pairs originating from a particular

crystal structure were kept together in one of the two sets.

Thus, no crystal structure was represented in both the model

fit and validation.

Classification tables (also sometimes referred to as confu-

sion matrices) show the extent of correct versus incorrect

model predictions with respect to the reference data. These

tables for both the training set and validation set are presented

in Tables 9(a) and (b).

Classification of the training data is presented in Table 9(a),

which lists correct and incorrect results following a model fit

on data from 2355 hydrogen-bonded pairs and 6906 non-

hydrogen-bonded pairs. This model was then used to predict

propensities for the validation set, of which there were 1925

pairs observed to be hydrogen bonded in the sample, and 6372

pairs not hydrogen bonded. Classification of this validation

data is then shown in Table 9(b). None of the information for

the latter set of pairs was used in the model regression. The

resulting propensity values for 87% (7220 of 8297) of the

samples had the correct result, with a cut-off of � = 0.35. [This

value was chosen as a value that gave balance in the percen-

tage classification of both positive (sensitivity) and negative

outcomes (specificity).] (A more informative representation in

general is the ROC curve which shows how classification

varies with cut-off; see Fig. 6.)

As the model is fitted, within the potential of the para-

meters in the model, to reproduce the input observations, this

validation is necessary to check that the model is not highly

dependent on the particular sample data. Since the model set

reproduces in the validation set the percentage correct clas-

sification of the training set, to well within the uncertainties of

the coefficients in the model, one may be satisfied that such

dependence on input data does not exist in this case. Thus, the

underlying trends modelled in the example would appear to be

more universal and re-observable. Qualitatively identical

results were also obtained using a random choice validation

set with 12 000 data, leaving 5558 data for the training set, and

also using variations in the random sampling of validation

data.

4.3. Results: example comparison

Possible hydrogen bonds between donor and acceptor

atoms in the example molecule, Fig. 1, have been given

propensity scores using the fitted LHP model, and compared

against the observed behaviour in the crystal structure,

MIFCEJ. Visualizations of the three-dimensional structure of

MIFCEJ, using the Mercury program (Macrae et al., 2006), are

given in Fig. 8. Specific bonding groups and labelled bonds can
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Figure 6
ROC curve using the model to predict the training set outcomes.
Sensitivity and specificity are defined in the text (x4.2.2). The diagonal
dotted line indicates the curve of a model with no predictive power: there
is equal likelihood of a correct and an incorrect prediction.

Table 7
Test of the null hypothesis.

Comparison of the optimal model following regression with a model
independent of any parameters (the ‘null hypothesis’). DF = degrees of
freedom. The methods are introduced in x4.2.1.

Statistic DF �2 Pr > �2

�2 log(likelihood) 12 7885 < 0.0001
Score 12 4960 < 0.0001
Wald 12 3302 < 0.0001



be found in Fig. 8(a). The calculated propensities are displayed

in Fig. 7, and the combination of the predictions and the

observations may also be viewed in Table 10.

With a cut-off criterion of � = 0.35 to distinguish hydrogen

bonds as likely or not (this is a value which gives a similar

percentage of correct classification of both outcomes), all the

observed bonds are predicted to form (although there is some

uncertainty in two predictions, see below). The calculations

reveal, given no prior three-dimensional geometric informa-

tion, that the most likely hydrogen bond to form is the primary

amide–primary amide bond [denoted amido(1�)–amido(1�) on

the chart], with a propensity of 0.772, i.e. a likelihood of

greater than 77%. The second amido

pair [amido(2�)–amido(2�)] involving

the secondary amide fragments is

predicted to be less likely to form, but

is ranked the second most likely pair,

61%. From the structural survey we

can see that both hydrogen bonds are

observed (see Fig. 8a, bonds � and �).

There are three remaining observed

hydrogen bonds. The primary amide

and carboxyl groups (carbonyl

oxygen) have a predicted propensity

of 0.58 (� in Fig. 8a), the secondary

amino and carboxyl groups have a

propensity of 0.37 (� in Fig. 8a) and

the carboxyl and primary amide

[amido(1�)] have a propensity of 0.31

to form a hydrogen bond (" in Fig.

8a). In the latter two cases, the error

bars span the cut-off, and although

this was an arbitrary choice to give a

degree of equality in the fraction of

correct positive and negative predic-

tions, this reflects an uncertainty in

predictions using the propensities of a

mid-ranged value.

Considering the non-interacting

pairs in the structure, the model

accurately predicts the propensities of

bonding for the carboxyl–carboxyl

pair, with either the carbonyl oxygen

[carboxyl–carboxyl( O)] or

hydroxyl oxygen [carboxyl–carbox-

yl(OH)] as an acceptor, of 15% for

the former and 3% for the latter, i.e.

very unlikely for either acceptor site

in the functional group. This ability to

identify pairs that are unlikely, and

perhaps unfeasible as a hydrogen-

bonded pair, is of great value, for

example, in reducing the size of the

search space in a crystal-structure

prediction procedure, when iterating

through permutations of hydrogen-

bonded networks in sets of equi-

energetic candidates.

The remaining pairs observed not hydrogen bonding, which

involve the amido fragments as an acceptor, are predicted to

be quite likely to bond, despite this not being the case in the

structure. Both the secondary amino with either primary or

secondary amides are predicted to bond; their predicted

propensities being 0.59 and 0.49, respectively. The amide

functionality in this structure is clearly a strong hydrogen-

bond former, with the other pairings involving this group

observed to be hydrogen bonded and scoring highly. We may

observe, however, that all but one of the predicted propen-

sities for pairs involving the amido group not found to be
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Table 9
Classification tables comparing hydrogen-bond prediction versus observation using the validation
model, fitted with a training set of 9261 pair data, and validated with a separate set of 8297 pair data.

(a) Model predictions for training set.

From\to
Predicted no
hydrogen bond

Predicted hydrogen
bond Total pairs % correct

Not hydrogen bonded in sample 6022 884 6906 87.20
Hydrogen bonded in sample 364 1991 2355 84.54
Total 6386 2875 9261 86.52

(b) Model predictions for validation set.

From\to
Predicted no
hydrogen bond

Predicted hydrogen
bond Total % correct

Not hydrogen bonded in sample 5602 770 6372 87.92
Hydrogen bonded in sample 307 1618 1925 84.05
Total 5909 2388 8297 87.02

Table 10
Propensity predictions for donor–acceptor atom pairs in MIFCEJ.

The donor–acceptor are categorized as identified survey groups, with the functional description on the
example molecule in parentheses.

Donor, �D Acceptor, �D

Hydrogen-bonding observation,
label (see Fig. 8a)

Propensity,
�

Amido (secondary amide) Amido (secondary amide) Intermolecular, � 0.614
Amino, secondary (indole) Carboxyl( O) Intermolecular, � 0.367
Amido (primary amide) Amido (primary amide) Intermolecular, � 0.772
Amido (primary amide) Carboxyl( O) Intermolecular, � 0.579
Carboxyl(OH) Amido (primary amide) Intermolecular, " 0.314
Amino, secondary (indole) Amido (primary amide) Not bonded 0.589
Amino, secondary (indole) Amido (secondary amide) Not bonded 0.488
Carboxyl(OH) Carboxyl( O) Not bonded 0.157
Carboxyl(OH) Carboxyl(OH) Not bonded 0.033

Table 8
Type III analysis.

The significance of the model parameters is tested by sequentially removing one and observing any reduction
in model quality. DF = degrees of freedom.

Source DF �2 (Wald) Pr > Wald �2 (LR) Pr > LR

Competition function 1 1304 < 0.0001 1304 < 0.0001
Donor steric function 1 18.39 < 0.0001 18.39 < 0.0001
Acceptor steric function 1 817.2 < 0.0001 817.2 < 0.0001
Donor-amino, secondary 4 265.0 < 0.0001 265.0 < 0.0001
Donor-amido 4 1555 < 0.0001 1555 < 0.0001



hydrogen bonded are lower than those that are observed. Such

simultaneous hydrogen-bond formation is much less likely.

Of course, treating possibilities in this pairwise manner

ignores combinatorial aspects. That is, if a pair is considered as

being hydrogen bonded, the likelihood of a second hydrogen

bond forming is dependent on new factors, and could possibly

be much lower. (This behaviour itself could be measured in

the CSD in future work). It is relevant to restate that the

propensity score is a potential pairwise probability considering

a discrete choice involving all alternatives. For mid-ranged

predictions only speculative assertions can be made.

It is worth noting the degree of success of the model with

this example. Five of the nine pairings have been correctly

predicted; three observed as hydrogen bonded and two

otherwise. Two of the nine pairings are wrongly classified: both

not observed as hydrogen bonded. There are two predictions

whose outcome is uncertain at a 95% confidence interval and a

cut-off of 0.35. Thus, five of a discernable seven predictions,

71%, are classified correctly, and the model then succeeds less

decisively for this example case than the average of 87% in the

validation set of > 8000 pairs. Other structures in the valida-

tion set are then likely to show more accurate discrimination

over the full set of donor–acceptor pairs. Nonetheless, it is the

difficult cases for which the model does not comparatively

succeed by which one may learn and refine any model

description. An advantage of the logit method is that predic-

tions for ambiguous cases may be improved by further model

descriptors (e.g. the presence of precursory intramolecular
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Figure 8
The three-dimensional structure of MIFCEJ, displayed using Mercury
(Macrae et al., 2006). (a) The hydrogen bonds (shown as red dashed lines)
in the MIFCEJ structure. The bonds are labelled (�–") as described in
Table 3. Adjacent hydrogen-bonding donor and acceptor groups to the
central molecule are labelled. (Donor H atoms from the adjacent groups
are not displayed). (b) Packing of MIFCEJ viewed in an a projection.
Hydrogen bonds show continuous chains in the b (carboxyl primary
amide links) and c directions (indole C O of carboxyl links). (c) Packing
of MIFCEJ viewed in the b projection. Hydrogen bonds show two types
of continuous chain in the a direction (primary amide–primary amide and
secondary amide–secondary amide links).

Figure 7
Histogram showing predicted hydrogen-bond propensities for each
donor–acceptor pair on the molecule N2-(indol-3-ylacetyl)-l-asparagine.
Each pair is labelled by its associated model group, �, with any required
distinction given in parentheses. The parameters for each pair and
corresponding functional group on the molecule are displayed in Table 3.
Predictions for pairs observed to be hydrogen bonded in the structure are
coloured light blue and pairs observed not to be hydrogen bonded are
coloured red. The criterion as to whether a hydrogen bond between the
pair is more or less likely is above or below a propensity value of 0.35 (see
text, x4.3), displayed as a horizontal blue line to aid comparison.



hydrogen bonds). Given the form of the model, these can be

included straightforwardly, and their added influence may be

systematically observed.

Because both the most likely and unlikely donor–acceptor

pairings are revealed as correct predictions on analysis of the

structure in the example, MIFCEJ, we may conjecture that this

structure is the thermodynamically stable crystal form. There

are some mid-ranged propensity predictions that are less

decisive and we suggest that these potential bonds, although

not as likely, may be favourable in an alternative conforma-

tion. If the formation of a majority of the set of likely inter-

actions is possible, other metastable polymorphs cannot be

ruled out. Subsequent polymorph screening on the molecule

may in the future verify these conjectures.

5. Conclusions

A new hydrogen-bond survey method has been presented,

based on the CSD, which extracts descriptive molecular and

chemical properties. The properties are designated as discri-

minatory variables in the formation of a hydrogen bond

between a specified donor and acceptor atom pair. A new

predictive statistical model has been developed, denoted the

logit hydrogen-bonding propensity (LHP) model, which

applies the variables to define a binary likelihood: the

propensity of bond formation between the pair. Initial results

are promising. The model gives correct classification for

� 90% of sample donor–acceptor pairings, of a set of 17 558

pairs from 1083 organic crystal structures in the CSD.

A specific example structure, MIFCEJ, from the surveyed

set of crystals was analysed in detail. The observed hydrogen

bonds in the structure were compared with the model

propensities, and an important discrimination was observed

between likely and unlikely pairs to form a bond. This strong

attribute of the model quickly identifies unlikely bond pairs

and may be used, for example, to identify less-common

structural factors.

The model was validated using a smaller training set, as a

subset from the original data, and assessed for goodness-of-fit

using the remaining excluded subset for validation. The vali-

dation shows that the strong discrimination of likely versus

unlikely hydrogen bonds is maintained for similar crystals,

despite no information from these being used as input in the

model. We conclude that this initial LHP model is quite

successful, in that:

(i) it has few parameters, all of which are chemically

pertinent,

(ii) it has a high degree of correct classification and

(iii) it reproduces successful discrimination for new or

predictive cases, extra to cases which form the model data.

The model has much flexibility, improvements and refine-

ments being quite accessible in the current framework. Work

is being undertaken to study the success of fitted LHP models

in a bid to better understand those structures that form the

most notable failures. New or improved model parameters

may be designed based on these studies. Future publications

are planned presenting our progress and application of the

approach to a variety of examples from different chemical

families.

APPENDIX A
Summary of statistical theory

This appendix contains a short summary of the mathematical

theory which comprises logistic regression. As well as

providing further information for the interested reader, it

provides some justification for the present use of the theory,

given the nature of the sample data studied here.

A1. Assumptions on the hydrogen bond

The (potential) hydrogen-bonded pairs in the sample data

are considered to satisfy only one of two outcomes: either they

are hydrogen bonded in a crystal structure or they are not.
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Figure 9
The Gumbel distribution. The distribution is that assumed for the error in
the utility in the logit model.

Figure 10
The Logistic function. The ordinate axis variable is the value of the utility
and the abscissa value gives a prediction of propensity.



This is known as a dichotomous response variable, for which a

Bernoulli-distributed probability estimate can be obtained.

This type of estimate is a discrete distribution. A further

assumption is that the actual hydrogen bonds observed in a

crystal structure are considered to be those with the highest

likelihood of forming among all possible donor–acceptor pairs.

The particular discrete choice model selected is the logit

model. It is suited to the current application given its specific

deterministic and stochastic probabilities for a choice. The

logit model assumes the predicted likelihoods are disag-

gregate, i.e. based on individual attributes. There are a finite

number of alternatives, each having a number of attributes

that determine the preference (indifference) for a choice. A

degree of utility for a choice is defined, given the model

assumes the preference has zero uncertainty. Utility is repre-

sented by a random model, providing a deterministic decision

process.

A2. Utility function

Within the logit model, the utility is modelled assuming that

the choice will be made with perfect discrimination, but the

analyst has limited or partial information (a limited extent of

available descriptive data). The utility function is composed of

a deterministic part, modelling the underlying choice discri-

mination, and a stochastic part for the uncertainty in the

representation of the sample data.

The utility that individual i associates with alternative a is

given by

Ui
a ¼ Vi

a þ "
i
a; ð8Þ

where Vi
a is the deterministic utility and "i

a is a stochastic

variable, capturing the uncertainty. The assumption is that the

alternative with the highest utility is that which is chosen, b,

thus the probability of the optimal choice Pi
c, from the choice

set c, is given by

Pi
cðbÞ ¼ P½max

a2c
ðUi

aÞ�: ð9Þ

A2.1. Stochastic utility. The logit model is derived from the

assumption that error terms in the utility function per choice

are independent and identically Gumbel distributed. The

probability distribution function (displayed in Fig. 9) arises in

extreme value theory and is a specific case of the Fisher–

Tippet distribution [see (10)], around mean 	 = 0 and width

coefficient � = 1 (see also e.g. McFadden, 1973). It approx-

imates the normal distribution around the mean, shares the

same mode, but has large positive skew. This error-distribution

estimate assists in maximization of the utility function.

Pðx; 	; �Þ ¼
exp �x�	

�

� �
: exp � exp �x�	

�

� �� �
�

ð10Þ

A2.2. Deterministic utility. Given independently Gumbel

distributed error terms in a utility prediction for alternative, a,

one can build the underlying deterministic probability distri-

bution. This is given by the logistic function

�i
cðaÞ ¼

expðUi
aÞ

1þ expðUi
aÞ
; ð11Þ

which can be seen displayed in Fig. 10. A probability estimate

is derived by an approximation to the deterministic utility, Vi
a,

to complete the utility estimate. This is commonly expressed as

a linear function of explanatory variables

Vi
a ¼ �þ

X
k

xi
k�k: ð12Þ

It is defined by � as the baseline variable or intercept and xi
k

as a vector representing all k-independent attributes, whose

influence on the model is controlled by the magnitude of the

kth coefficient in the set, �k. The parameters are incremental

effects to an arbitrary baseline parameter. A deterministic

utility function that is linear in the explanatory variables is

much more flexible than it may first appear, as functions of the

parameters within the sum can also be included, e.g. a quad-

ratic function. Changes in observed likelihood with one

parameter can reveal these non-linear relationships, and the

effects of the resultant model fit should be examined to reveal

any improvements from a linear model.

The complete probability estimate is written by inserting Vi
a

into (11)

�i
c;kðaÞ ¼

expð�þ
P

k

xi
k�kÞ

1þ expð�þ
P

k

xi
k�kÞ

: ð13Þ

A set of �i
c;k values can be determined from a sample data

set to approximatePi
c. Thus, the function is fitted on the logit

scale. Inversion of (11) reveals the relation of the log odds (the

ratio of positive to negative probability of an outcome, also

denoted the logit) and the linear utility function of the

explanatory variables

logitð�i
c;kÞ ¼ log

�i
c;k

1� �i
c;k

� �
ð14Þ

¼ �þ
X

k

xi
k�k: ð15Þ

A3. Model regression

To fit the model one must maximize the likelihood function

(which produces function parameters from given probabilistic

outcomes). Maximum likelihood algorithms can be applied in

this case to approximate the form of the probability function

which is most likely to have generated a particular probability

score. There is no analytical expression for the constraint in

this model and so the procedure is done iteratively, often using

Newton’s method or related scheme. Once the model para-

meters are obtained, �i
c;k enables a comparison of fitted values

on the probability scale, or logitð�i
c;kÞ enables a comparison of

ratios of fitted variables. The regression output lists the values

of the intercept and the � coefficients, defining the specific

model equation for the training data.
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The functional form of the competition function described

in the text is developed from an original concept by Dr James

Chisholm. The authors wish to thank Dr John Liebeschuetz

for a critical reading of the manuscript.
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